Legend:
  ^ indicates an exponent (2^2 is 2 squared or 4)
	* indicates multiplication (2*2 is 4)
	sqrt() indicates a square root (sqrt(4) is 2)

1. List of Conic Sections
	Circle
	Ellipse
	Parabola
	Hyperbola

2. Features of Conic Sections
	A. Circles
		Equation: x^2 + y^2 = a^2
		Eccentricity: 0
		Linear Eccentricity: 0 
		Semi-Latus Rectum: a
		Focal Parameter: Infinite
	B. Ellipses
		Equation: (x^2/a^2) + (y^2/b^2) = 1
		Eccentricity: sqrt(1 - (b^2/a^2))
		Linear Eccentricity: sqrt(a^2 - b^2)
		Semi-Latus Rectum: b^2 / a
		Focal Parameter: b^2 / sqrt(a^2 - b^2)
	C. Parabolas
		Equation: y^2 = 4ax
		Eccentricity: 1
		Linear Eccentricity: a
		Semi-Latus Rectum: 2a
		Focal Parameter: 2a
	D. Hyperbolas
		Equation: (x^2 / a^2) - (y^2 / b^2) = 1
		Eccentricity: sqrt(1 + (b^2 / a^2))
		Linear Eccentricity: sqrt(a^2 + b^2)
		Semi-Latus Rectum: b^2 / a
		Focal Parameter: b^2 / sqrt(a^2 + b^2)
	E. Relations of Features
		Focal Parameter * Eccentricity = Semi-Latus Rectum
		a * Eccentricity = Linear Eccentricity
		
3. Standard Form Equation of a Conic Section
	A. The Equation
		Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 Where A, B, and C are not all 0
	B. Determining the type of Conic Section
		Using the Equation B^2 - 4AC we can determine the type of a non-degenerate conic section.
		If B^2 - 4AC is less than 0 the equation is an Ellipse.
		If B^2 - 4AC is less than 0 and A = C and B = 0 the equation is a Circle
		If B^2 - 4AC is equal to 0 then the equation is a Parabola
		If B^2 - 4AC is greater than 0 the equation is a Hyperbola
		If B^2 - 4AC is greater than 0 and A + C = 0 the equation is a Rectangular Hyperbola
4. Step by Step
	In this section I'm going to run through what the equation of the given type of Conic Section in both the standard for variables and using variables that use readable names.
	
	A. Circles
		Variables: Center Point (h, k), Radius r
		Equations: (x - h)^2 + (y - k)^2 = r^2
		Plaintext: (x - The Center X Value)^2 + (y - The Center Y Value)^2 = Radius^2
		
	B. Ellipses
		If the Bigger Axis is Horizontal
		Variables: Center Point (h, k), Length of Big Axis 2a, Length of Small Axis 2b
		Equations: ((x - h)^2 / a^2) + ((y - k)^2 / b^2) = 1
		Plaintext: ((x - Center X Value)^2 / Half of the Length of the Big Axis^2) + ((y - Center Y Value)^2 / Half of the Length of the Small Axis^2) = 1
	
		If the Bigger Axis is Vertical
		Variables: Center Point (h, k), Length of Big Axis 2a, Length of Small Axis 2b
		Equations: ((x - h)^2 / b^2) + ((y - k)^2 / a^2) = 1
		Plaintext: ((x - Center X Value)^2 / Half of the Length of the Small Axis^2) + ((y - Center Y Value)^2 / Half of the Length of the Big Axis^2) = 1
		
		Notes: To find the distance between the center of the Ellipse and the Foci use
		c^2 = a^2 - b^2 where a > b > 0
	
	C. Hyperbolas
		If The Transverse Axis is Horizontal
		Variables: Center Point (h, k), Distance between Vertices 2a, Distance between Foci 2c
		Equations: ((x - h)^2 / a^2) - ((y - k)^2 / b^2) = 1
		Plaintext: ((x - Center X Value)^2 / Half of the Distance between Vertices^2) - ((y - Center Y Value)^2 / b^2) = 1
		
		If The Transverse Axis is Vertical
		Variables: Center Point (h, k), Distance between Vertices 2a, Distance between Foci 2c
		Equations: ((y - k)^2 / a^2) - ((x - h)^2 / b^2) = 1
		Plaintext: ((y - Center Y Value)^2 / Half of the Distance between Vertices^2) - ((x - Center X Value)^2 / b^2) = 1
		
		Notes: To find b^2 use c^2 = a^2 + b^2
	
	D. Parabolas
		If Axis is Horizontal and p DOES NOT EQUAL 0
		Variables: Vertex (h, k), Focus (h + p, k), p
		Equations: (y - k)^2 = 4p(x - h)
		Plaintext: (y - Vertex Y Value)^2 = 4p(x - Vertex X Value)
		
		Notes: Directrix is the line x = h - p, Axis is the line y = k
		
		If Axis is Vertical and p DOES NOT EQUAL 0
		Variables: Vertex (h, k), Focus (h + p, k), p
		Equations: (x - h)^2 = 4p(y - k)
		Plaintext: (x - Vertex X Value)^2 = 4p(Y - Vertex Y Value)
		
		Notes: Directrix is the line y = k - p, Axis is the line x = h
		
5. Sources
http://hotmath.com/hotmath_help/topics/conic-sections-and-standard-forms-of-equations.html

http://en.wikipedia.org/wiki/Conic_section